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A comparison between measured and simulated transient acoustic fields
generated by a thin rectangular impacted steel plate is reported. The plate
vibration is modelled in the time domain using a finite difference scheme of
second-order in time and fourth-order in space (2-4 scheme) and the radiated
acoustic pressure is obtained by solving numerically the Rayleigh integral equation
by using a simple Boundary Element Method (trapezoidal rule). The simulated
results are evaluated in the form of the spatial pressure distribution at times
short-after the impact excitation. The measurements are performed using an
optical method: pulsed two-reference-beam holographic interferometry. Results in
the form of 2-D projections of the acoustic pressure field are obtained and
compared with the simulations. A high degree of similarity is found between the
measured and simulated sound fields.
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1. INTRODUCTION

Mechanical impacts often give rise to acoustic radiation. Impact noise arises in
processes like riveting, forging, stamping and in numerous other hammer-type
operations. In addition to the direct sound radiation from the impacted bodies,
transmission of impact noise through coupled structures usually occurs. This so
called structure-borne sound is of importance, for example, in thin-walled
structures in vehicles and machineries subjected to transient excitation. The
transient part of such sound fields is of interest in the studies for controlling and
reducing noise. The initial behavior of a sound field is also of importance from
a perceptual point of view. Differences between tonal qualities or timbres, as
interpreted by our hearing, can partly be explained by different transient
components of the sound [1]. For example, if the transient part of a tone from
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a musical instrument is removed, a listener will in most cases not easily distinguish
between different instruments.

Pulsed holographic interferometry is a non-contacting and whole-field optical
technique that measures transient events like acoustic waves in air and liquids in
a time resolved manner [2–4]. Because of the very short duration (030 ns) of the
emitted light from pulsed lasers rapid events such as propagating sound waves are
‘‘frozen’’ at a pulsed holographic recording. A double exposed hologram
(comparing a disturbed and an undisturbed state of the air) gives an interference
pattern which can be related directly to the spatial distribution of the sound
pressure field.

The purpose of this paper is to compare a numerical model for sound radiation
from a transiently vibrating plate with measurements. For that reason, an
experiment is designed with a cantilever plate impacted by an air-gun lead bullet.
The propagating sound field from the plate is recorded at different instants of time
shortly after the impact. Results are presented as two-dimensional projections of
the sound field showing acoustic waves due to compression and expansion of the
air.

For the numerical modelling of transient sound fields, time-domain rather than
frequency-domain methods are used. The evolving sound field from an impact
excited structure can then be studied in a time-resolved manner in the near field
from the start of the excitation. The numerical simulation is based on a finite
difference formulation of the flexural wave equation in an isotropic plate excited
by a pulse representing the impact of the bullet. A Rayleigh integral equation is
used for obtaining the radiated pressure at each time step from the displacement
pattern of the plate. The pressure is calculated at a number of spatial points in
the near field of the plate and presented as a pattern of acoustic waves. In this
way, the simulated results can be compared directly with the optically measured
pressure distributions.

2. BASIC EXPERIMENT

A 0·5-g lead bullet of length 5·5 mm (B), with velocity of about 100 m/s, is fired
towards a cantilever steel plate (CP); see Figure 1. The impact velocity is calculated
from the time difference (about 1 ms) between two signals: one delivered by a
trigger laser beam located 10 cm in front of the plate and a second delivered by
a strain gauge glued to the plate. Just before the bullet hits the plate the first laser
pulse is emitted from the double pulsed ruby laser (RL) giving a recording at the
holographic plate (HP) of the undisturbed state of the air surrounding the plate.
The second laser pulse (pre-set relative to the first one) is fired a few fractions of
a millisecond after the impact, now giving a second recording at the same
holographic plate of the disturbed state of the air. A more detailed description of
the experimental set-up can be found in reference [2]. The acoustic field is recorded
at instants of time shortly after impact, before it has been reflected at the
surrounding surfaces. The steel block (SB) behind the cantilever plate is used for
reflection of the laser light and is not a part of the acoustic experiment. It is placed
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Figure 1. The experimental set-up for pulsed holographic recording. (B) air-gun bullet; (BS) beam
splitter; (CP) cantilever plate; (HP) holographic plate; (NL) negative lens; (M) mirrors; (O) object
beam; (R) reference beam; (RL) double pulsed ruby laser; (SB) steel block.

at enough distance from the plate to ensure that no reflected acoustic waves will
be present in the recordings.

As a result of the acoustic pressure disturbance at the second holographic
recording, the index of refraction is changed a small amount giving an optical path
difference, DL, between the first and second recordings. For small changes of the
index of refraction, bending of the light rays is negligible and DL can be expressed
as [5]

DL=g [n(x, y, z)− n0] dy, (1)

where n0 is the refractive index representing the undisturbed state of the air and
n(x, y, z) is the refractive index distribution along the optical path in the second
exposure. The optical path difference appears as interference fringes in the
reconstructed hologram. Normally in holographic interferometry, the fringes do
not give information on the sign of DL. This ambiguity is resolved in this
experiment by using the two-reference-beam holographic technique, as described
in reference [2]. The interference fringes can be related directly to the change in
density along the optical path, because there exists a relation between refractive
index and density, the Gladstone–Dale equation; see reference [5]. Further, the
pressure can be derived from the density by thermodynamic relations. Thus,
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two-dimensional projections (pressure maps) of the sound pressure field are
obtained from the holographic measurements.

3. NUMERICAL SIMULATION OF THE TRANSIENT SOUND FIELD

3.1.    

It is assumed that the transverse displacement W(x, y, t) of the thin undamped
isotropic rectangular steel plate of thickness h and density r is governed by the
classical system of equations [6]
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12W
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12My

1y2 +2
12Mxy

1x 1y
+ q(x, y, t)

where Mx , My and Mxy are the moments per unit length, D=Eh3/12(1− n2) is the
bending stiffness of the plate, E is the Young’s modulus and n is the Poisson’s ratio.
The plate, initially at rest, is set into vibration through the loading q(x, y, t) which
represents the impact of the lead bullet. The plate is clamped at the edge along
x=0 and free at the three other edges. Therefore, the boundary conditions are

W=0 and 1W/1x=0 for x=0, (3)

Mx =0 and 1Mx /1x+2 1Mxy /1y=0 for x= lx , (4)

My =0 and 1My /1y+2 1Mxy /1x=0 for y=0 and y= ly . (5)

It is well-known that combining equations (2) yields the equation

rh 12W/1t2 =−D94W+ q(x, y, t), (6)

where 94 is the biharmonic operator. Although equation (6) may appear simpler
in the form than the system of equations (2), it is appropriate here to deal with
the latter system for the two following reasons. Firstly, it is necessary to know
explicitly the expressions for the moments Mx , My and Mxy in order to calculate
the free boundary conditions in equations (4) and (5). Secondly, it turns out that
the numerical algorithm is much faster (about a factor of 10) for a system of
equations involving second-order partial derivatives only than for a single
equation involving fourth-order partial derivatives, such as equation (6).

In what follows, the coupling of the plate with the surrounding fluid is neglected.
One argument for justifying this assumption is to calculate the non-dimensional
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intrinsic fluid-loading parameter o at the critical frequency of the plate (see, for
example, reference [7]). This parameter is defined as

o= raca /rhvc , (7)

where ra is the air density, ca is the speed of sound in air and vc is the circular
critical frequency given by

vc =2pfc =zrhc4
a /D. (8)

The condition of negligible coupling is o�1. In the present case, the critical
frequency fc of the plate is equal to 11 kHz, which leads to o=7·0×10−4. The
critical frequency and the fluid-loading parameter are calculated with the following
constants: ra =1·29 kg/m3, ca =340 m/s, r=7850 kg/m3, h=1 mm, n=0·3,
E=210 GPa.

3.2.    

The time domain numerical simulation of the vibrating plate is conducted by
using an explicit finite difference scheme of second-order in time and fourth-order
in space (a so-called 2-4 scheme) which offers a good compromise between stability
conditions, accuracy and computational costs. In order to achieve this, the partial
derivatives in the system of equations (2) are approximated by centered finite
differences. Thus, the continuous displacement W(x, y, t) is computed on a spatial
grid with step sizes (Dx, Dy) and at discrete instants of time with step size Dt. In
what follows, the discrete displacement of the plate is written as

Wn
l,m,W(lDx, mDy, nDt), (9)

where l, m, and n are integer numbers. The symbol , means equal by definition.
The following finite difference approximations of the partial derivatives involve
centered operators for which two different notations are used, depending on
whether the approximations are calculated at the grid points themselves or at the
centers of the segments between the grid points. For example, a second-order
approximation of the first spatial derivative of the displacement W with respect
to x at discrete position (l+1/2)Dx is written with the symbolic operator

(D(2)
x W)n

l+1/2,m,
Wn

l+1,m −Wn
l,m

Dx
. (10)

Similarly, a second-order approximation of the first spatial derivative of the
displacement W with respect to x at discrete position lDx is written with the
symbolic operator

(D	 (2)
x W)n

l,m,
Wn

l+1/2,m −Wn
l−1/2,m

Dx
. (11)
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In order to obtain a fourth-order approximation in space, the second partial
derivatives of W with respect to x and y, respectively, are approximated by the
operators

(D(4)
xxW)n

l,m,
1

12Dx2 [−(Wn
l+2,m +Wn

l−2,m )+16(Wn
l+1,m +Wn

l−1,m )−30Wn
l,m ],

(12)
and

(D(4)
yy W)n

l,m,
1

12Dy2 [−(Wn
l,m+2 +Wn

l,m−2)+16(Wn
l,m+1 +Wn

l,m−1)−30Wn
l,m ].

(13)

Similar operators are used for approximating the second-order partial derivatives
of the moments Mx and My with respect to x and y.

The cross partial derivative of the form 12W/1x 1y is approximated by the
operator

(D(4)
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l+1/2,m+1/2 ,
1

242DxDy
[(Wn
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+ 27(Wn
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l+2,m+1)

+ 272(Wn
l,m +Wn
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l+1,m −Wn

l,m+1)]. (14)

Finally, the cross partial derivative of the form 12Mxy /1x 1y is approximated by
the operator:
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l,m ,
1

242DxDy
[((Mxy )n

l−3/2,m−3/2 + (Mxy )n
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− (Mxy )n
l−1/2,m+1/2)]. (15)

With the help of the finite difference operators defined in equations (12)–(15)
and approximating further the time derivative by a second-order finite difference
scheme, the system of equations (2) becomes

2 (Mx )n
l,m

(My )n
l,m

(Mxy )n
l+1/2,m+1/23=−D21n0 n

1
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With this scheme, the truncation error in the approximations of the spatial
derivatives is of second-order in time and fourth-order in space, which is consistent
with the order of the derivatives. A generalization of equations (16) can be made
for viscoelastic orthotropic plates [8].

The numerical formulation of the boundary conditions expressed in equations
(3)–(5) are obtained by means of the image method. The spatial derivatives are
approximated by second-order operators, since it is known that fourth-order
approximations leads here to an unconditionally unstable scheme, due to the high
number of fictitious points situated outside the plate domain [9]. It has been
checked, however, that this second-order approximation of the boundary
conditions does not significantly alter the accuracy of the propagation scheme.

3.3.      

A rectangular mesh is used for the spatial discretization. Equal step sizes are
selected in the x and y directions for isotropy reasons. The value of the spatial
step Dx=Dy is determined in order to ensure the stability of the explicit 2-4
scheme, and to guarantee that the relative dispersion error in phase velocity is
smaller than 1% in the audible range.

The stability of the numerical scheme (16) was analyzed with the help of the
Fourier method [10]. This leads to the stability condition

Dx2 eDx2
min =2DtX2D

rh X0431
2

(1+ n)+0761
4

(1− n). (17)

In comparison, the stability condition for a standard centered finite difference
scheme of second-order in time and space (2-2 scheme) is written as

Dx2 eDx2
min =4DtzD/rh. (18)

For a steel plate with n=0·3 this means in practice that, for a given time step,
the minimum spatial step for the 2-4 scheme must be about 1·16 times higher than
for the 2-2 scheme.

The accuracy of the numerical scheme is evaluated in terms of its dispersion
properties. The general method consists of comparing the continuous phase
velocity of a wave with frequency v travelling in the plate after the impact with
the numerical phase velocity derived from the finite difference scheme [10]. From
the continuous plate equation (6) one has

v= k2zD/rh, (19)

where k=zk2
x + k2

y is the wavenumber. The angle u=arctan (ky /kx ) corresponds
to the direction of propagation of the travelling wave in the plate.

For a given wavenumber k, the frequency v in equation (19) has to be compared
with the numerical frequency vnum derived from the system of equations (16). The
accuracy of the numerical scheme depends on the propagation angle u. However,
it can be shown (see reference [9]) that the less favorable results are obtained in
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the limiting cases u=0 or u= p/2: i.e., for waves propagating parallel to the axes.
With Dy=Dx=Dxmin and a given Dt, one has, for the 2-4 scheme,

vnum (v)=
2
Dt

arcsin $sin
2 azvDt+ 1

3 sin4 azvDt
2a2 %, (20)

with

a=$0431
2 (1+ n)

2
+0761

4(1− n)
2 %

1/4

.

The relative error in phase velocity is given by

e(v)= (v−vnum )/v. (21)

In the present simulations, a time step of 1·3 ms (sampling frequency 768 kHz) has
been selected. This yields, for example, a relative error in phase velocity less than
0·7% in the audible range: i.e., for frequencies less than 20 kHz. With this time
step, the stability condition expressed in equation (17) yields a spatial step equal
to 3·3 mm. At a frequency of 20 kHz, the flexural wavelength is equal to 22 mm.
As a consequence the minimum number of points per wavelength Nl is equal to
6·7 in the audible range. This number becomes equal to 10 at 10 kHz, and equal
to 30 at 1 kHz. This grid density is of the same order of magnitude as the one used
by Frendi et al. in a similar problem [11]. In the present simulations, a sampling
frequency reduced by a factor of two (384 kHz) was also tested. However,
imperfections appeared in the result images in this case, as a result of the
undersampling. Therefore, the higher sampling frequency was selected.

In comparison, the corresponding 2-2 scheme with numerical frequency equal
to

vnum =
2
Dt

arcsin $sin
2 zvDt

2 % (22)

would have led to a relative error in phase velocity less than 5·2%.
In conclusion, the explicit 2-4 scheme needs about two times more operations

than the 2-2 scheme, but it shows better global properties since its accuracy is
improved by a factor of seven in the audio range.

3.4.     

Since one does not know exactly the characteristics of the force transmitted from
the lead bullet to the plate in the experiments, two additional experiments are
performed.

In the first experiment, the impact process was investigated by recording the
event by using a high-speed camera (Ultranac image-converter camera) in order
to obtain a realistic order of magnitude for the impact duration. Figure 2 shows
a sequence of frames of the event. The lower left frame is the first exposure,
captured just at the start of contact. In the following 6–7 frames, i.e. during
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Figure 2. The impact of a lead bullet on a steel plate recorded by a high-speed camera. The time
in ms is indicated in the upper left part of each frame.

30–40 ms, the bullet deforms in a plastic way. After 40 ms, it is still in contact but
it does not seem to deform any longer. Finally, at 130 ms the bullet is no longer
in contact. This suggests that the energy is transferred to the plate mainly during
the time the bullet deforms, that is, during the first 30–40 ms after the start of
contact. This time is used as an estimate for the duration of impact force in the
numerical simulations.

The shape of the force in the simulations is modelled as a sine-wave (Hanning
window) where the time derivatives are zero at the beginning and at the end of
the force curve. Such a curve is shown in Figure 3. This choice of shape together
with a duration of the force of about tmax =35 ms was shown to give pressure fields
in good agreement with the measured results.

However, since the impact of the lead bullet involved plastic deformation of the
material, the real shape of the force will most probably deviate from an ideal
symmetric sine wave. A second experiment, in which a piece of lead was impacted
by a hammer tip with a mounted force transducer, supported this assumption. The
ratio between the rise time of the force and the total duration time turned out to
be very repetitive. A series of 20 impacts, all with plastic indentation on the piece
of lead and with different magnitudes of the maximum force, gave ratios between
rise time and total duration time within the interval 0·64–0·75, with an average
of 0·70. An example of the force versus time obtained in this experiment is shown
in Figure 4. Although direct conclusions of the behavior of the force in the case
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of the lead bullet against the plate cannot be drawn from this experiment, which
has been conducted at a much lower impact velocity (less than 5 m/s), one has a
clear indication that the force most likely has an asymmetric shape due to plastic
deformation. Consequently, it exhibits more energy in the high frequency range
than a force of symmetric shape for the same duration (compare the force spectra
in Figures 3 and 4). This high-frequency content may be compensated by various
causes of damping in the experiments, which explains why the simulations (which
include no damping and a symmetric force) are in good agreement with the
experiments. In reference [12] further discussions of impacts involving plastic
indentations can be found.

Figure 3. Upper part: sine-wave shape (Hanning window) of the force versus time used in the
simulations. Lower part: frequency spectrum of the sine-wave shaped force. fe is the sampling
frequency.
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Figure 4. Upper part: force versus time in an impact experiment with an instrumented hammer
tip against a piece of lead. Lower part: frequency spectrum of the measured force. fe is the sampling
frequency.

3.5.     

The goal is to visualize the simulated results as the spatial distribution of the
pressure field in the same form as the experimental pressure maps. This allows
direct comparisons between numerical and experimental results. Thus, the pressure
is calculated at a large number of spatial points at one specific time instant shortly
after the start of excitation. Figure 5 shows the plate and an example of a plane
perpendicular to the plate (in the xy-direction) with points where the pressure is
evaluated. For each point, r, in the plane the pressure is calculated by using the
Rayleigh integral. It can be written as

p(r, t)=−
ra

2p g(S)

1
=r− r0=

12

1t2 W0r0, t−
=r− r0=

ca 1 dS, (23)
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where =r− r0= is the distance from one point in the plane to one point at the plate
surface.

Equation (23) is put into a numerical form by using a standard trapezoidal rule,
a particular simple form of the Boundary Element Method. This yields, for a
rectangular plate of length lx and width ly ,

p(r, t)=−
ra

2p
s

Nx −1

l=0

s
Ny −1

m=0

DxDy
4

12

1t2 0Wl,m (t−Rl,m /ca )
Rl,m

+
Wl+1,m (t−Rl+1,m /ca )

Rl+1,m

+
Wl,m+1(t−Rl,m+1/c)

Rl,m+1
+

Wl+1,m+1(t−Rl+1,m+1/c)
Rl+1,m+1 1, (24)

where Nx = lx /Dx and Ny = ly /Dy. Rl,m is the distance between the observation
point (r) and the grid point of co-ordinates lDx, mDy on the plate.

Figure 5. Geometry of the plate and a grid containing points for evaluation of the sound pressure.
The plate is clamped at x=0.
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The second-order partial derivative versus time in equation (24) can be
approximated here by any order finite difference scheme, depending on the desired
accuracy. In other words, no coherence is needed with space discretization since
there are no spatial derivatives of the displacement involved here. In order to keep
the explicit character of the scheme, a backward difference has been selected. A
fourth-order approximation of the acceleration, for example, is written as

12Wl,m

1t2 = s
6

i=0

CiWn− i
l,m +O(Dt4), (25)

with

C0 =84 539/24 480Dt2 C1 =−3861/340Dt2 C2 =8103/544Dt2

C3 =−6175/612Dt2 C4 =117/32Dt2 C5 =−48/85Dt2 C6 =137/24 480Dt2.

The main limitation of the pressure model follows from the use of the Rayleigh
integral which amounts to assuming that the plate is baffled although it is
obviously not the case in the experiments. However this method yields good results
in the present situation since most of the observations are limited to the very first
instants of time after the impact: i.e., before the waves reach the edges of the plate.
It will be shown in the next section to what extent the ‘‘baffled’’ assumption affects
the agreement between measurements and simulations.

For an appropriate comparison with measured results, a two-dimensional
projection of the sound field must be produced. First, the pressure distribution is
calculated in a number of planes. These planes are located, for example, across
the width of the plate (along the y-direction in Figure 5). Then, an integration
(summation) of the pressure values over y is performed. This give a
two-dimensional projection which can directly be compared with the optically
measured results.

4. RESULTS

Figures 6(a) and 7(a) show simulated pressure distributions outside the steel
plate in the xz-plane, see Figure 5, at two successive instants of time shortly after
the start of impact (140 and 185 ms, respectively). The dimensions of the plate are
300×30×1 mm. The edge of the plate is indicated in the middle of the figures
as a black vertical line. Bright and dark regions indicate positive and negative
sound pressure, respectively. The images show the result of summation of the
pressure in 25 planes along the y-direction in Figure 5. A spatial step of 1 mm is
chosen between the points in one plane and a step of 4 mm between each plane.

Measured pressure distributions at the same times as above are shown in
Figures 6(b) and 7(b). In both images, up and down the plate, trace-matched
acoustic waves with alternating positive and negative pressures are seen. These are
generated by the flexural bending waves in the plate travelling faster than the speed
of sound in air. Further away from the impacting point, the wavelength and the
radiating angle between the waves and the plate become smaller. This feature,
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Figure 6. Sound pressure distributions (in the x–z plane) at 140 ms after impact start. (a)
Simulated; (b) measured.

which is due to the dispersive character of the travelling flexural waves in the plate,
is well-captured in the simulated results.

Above the upper edge of the plate in the fields at 185 ms, differences between
Figures 7(a) and (b) can be observed. These differences can be explained by
restrictions in the numerical model (baffled model) implying that there is no
interaction of sound waves between the left- and right-hand sides of the plate,
which is obviously not the case in our experiments which have been conducted with
an unbaffled plate. Therefore, outside the edge of the plate in directions to its plane
comparisons cannot be made.

Around the impacting point, at the center in Figures 6 and 7, the direct
wavefront (moving with the speed of sound in air) is seen. Comparing the (a) and
(b) figures shows that the outer parts of this wave seem to agree quite well.
However, the lead bullet impact is a complex process which involves several
non-linear effects which influence the direct wave and the region close to the
impacting point. The high velocity of the lead bullet in the experiments leads to
a large deformation of the plate at the impacting point. Also, the plastic
deformation of the bullet produces thermal energy. At short times after impact,
the heat generated has not dissipated leading to a local increase in the temperature
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Figure 7. Sound pressure distributions (in the x–z plane) at 185 ms after impact start. (a)
Simulated; (b) measured.

Figure 8. Sound pressure distributions (in the x–z plane) at 155 ms after impact start. (a)
Simulated; (b) measured.
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at the impacting point. Non-linear effects like these are not taken into account in
the numerical model. Therefore, detail comparisons in this region of the sound
field must be performed with care.

The sound field is also studied in the yz-plane, viewed along the x-axis in
Figure 5. Figure 8(a) shows a simulated projection of the field at 155 ms after
impact. The upper edge of the plate is indicated by the black line along the
boundary between the left and right halves of the field. In this case the dimensions
of the plate are 190×30×1 mm, and the excitation is applied 15 mm from the
upper edge. This projection is a result of summation of the pressure field at 46
slices (yz-planes) in the x-direction, from 35 mm above down to 120 mm below
the excitation point. A step of 4 mm is used between each slice. Note that the
pressure magnitude seems to be stronger in directions about 45 degrees from the
plate than in directions perpendicular and parallel to the plate. The same
observation can be made in the measured projection, shown in Figure 8(b). This
projection is obtained with the same experimental set-up as shown in Figure 1 but
with an additional mirror placed above the plate. Also, similarities between the
wave pattern close to the plate can be found. However, comparisons cannot be
performed right outside the edges of the plate. In these regions the numerical
model is not valid. As mentioned above, there is no interaction between sound

Figure 9. Simulated pressure distribution (in the x–z plane) at 140 ms after impact start.
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waves from the left and right sides of the plate. That is the reason for the sharp
boundary separating the left and right halves of the simulated field in Figure 8(a).

Figure 9 shows a simulated pressure distribution in the xy-plane (see Figure 5),
at 5 mm in front of the plate of dimensions 300×30×1 mm. The contour of the
plate is indicated in the image. Note that this distribution corresponds to the
pressure in a single plane and not integrated values as in Figures 6(a)–8(a). The
trace-matched sound waves are clearly seen in Figure 9 as the small rectangular
shaped zones in the upper and lower part of the image with alternating positive
and negative pressure. The magnitude of these waves is strong. Also, they are quite
constant across the width of the plate. The radiation from the bending waves in
this case of a rather narrow plate is mainly two-dimensional. However, this
simulation also reveals sound waves propagating in other directions. They can be
explained by flexural motion across the width of the plate.

In an additional experiment, the sound pressure was measured by a small
condenser microphone, (linear up to 100 kHz), at one particular point outside the
upper part of the cantilever plate. The location of this point is in the (x, y,
z)-directions (255, 15, 10) mm (see Figure 5). The reason for this choice is to be
able to register the radiation of trace-matched waves before the direct sound wave
front has reached the microphone (about 300 ms after impact start). Also, having
the microphone outside the half-width (middle) of the plate should give a good
recording of the trace-matched waves since their variation is strong there, as
concluded from the simulated result in Figure 9. A comparative simulation is
performed in which the pressure is computed as a function of time at this particular

Figure 10. Time histories of the pressure variation at a single point located at (255, 15, 10) mm
in the (x, y, z)-directions. Solid curve, simulated pressure; dotted curve, measured pressure.
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point. In Figure 10, time histories of the calculated (solid curve) and the measured
sound pressure (dotted curve) are shown. A more rapid variation in the measured
pressure can be noticed, especially in the beginning. This difference can be
explained by higher frequency components in the excitation by the lead bullet in
the experiment than in the numerical simulation. However, the large scale
variations are quite similar.

5. CONCLUSION

Comparisons between time domain simulations and optically measured
transient sound fields radiating from an impacted plate have been performed.
Pulsed two-reference beam holographic interferometry was employed for the
measurements. The simulations are based on the Kirchhoff plate equation which
is solved numerically by an explicit finite difference scheme of second-order in time
and fourth-order in space. It has been checked that the Mindlin plate model would
not improve significantly the results in the audio range, because of the small
thickness of the plate. The sound pressure field due to radiation of the vibrating
plate is derived from the transverse displacement of the plate by solving the
Rayleigh integral equation (baffled model).

A high degree of similarity is observed between the simulated and measured
sound wave patterns within the regions where the baffled model is valid. Sound
waves produced by high speed bending waves in the plate are well-reproduced in
the simulation. Large deformations of the plate occur in the experiments at the
impact point which are not taken into account in the linear model used in the
simulations. Despite this fact the overall agreement is quite good in this region,
although detailed comparisons must be done with care.

In an additional experiment and simulation, the sound pressure versus time at
one point were compared. The large scale variations of the transient part of the
sound, produced by bending waves in the plate, agree well. At this stage, it could
be remarked that time histories with pointwise information are more difficult to
interpret than a spatial pressure map which gives a physical full-field picture of
the phenomenon.

The numerical model used is found to be suitable for modelling transient
acoustic fields radiated by plates into a light medium like air, in which the effect
of fluid-loading is small. It allows a full-field three-dimensional description of the
field except for directions in the plane of the plate where the baffled model is
inherently restricted. An improved model, allowing one to evaluate the sound field
in all directions from a vibrating body, should be investigated.

The model used for the force (a Hanning window) is another idealization of the
reality. This follows from the difficulty in measuring accurately the interaction
force between bullet and plate during the impact. However, it has been shown that
a good estimation of the impact duration yields satisfactory results even if the
exact shape of the force is not known. Measurements of impact forces at low
velocity, using a steel tip against a piece of lead, show that the force pulse becomes
asymmetric as the deformation becomes plastic. More work is needed here in order
to characterize the force pulse at higher velocities.
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With the experimental technique, two-dimensional projections of a transient
sound field are recorded. For a full three-dimensional description of the field,
several projections from a number of directions must be recorded and followed
by a tomographic reconstruction. Such reconstructions have been reported for a
sound field radiated by an harmonically vibrating surface [13]. In the transient
case, reconstructions have been performed for a circular symmetric sound field
radiating from an impacted plate [14]. Due to the symmetry, only one projection
was needed for the tomographic reconstruction. Reconstructions of a transient,
non-circular symmetric sound field have been performed, however, with an
electrical discharge as sound source [15]. In this experiment, the sound field
diffracted through a double slit (an acoustic Young’s experiment) was studied. For
a tomographic reconstruction of a transient sound field generated by a plate in
the general case, the technique to record the projections needs further
development.
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temporel pour la simulation numérique de plaques vibrantes. Application à la synthèse
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